
Unclassified

rDO(• MENTATION PAGE
lb. RESTRICTIVE MARKNGS

Is IE
SAD-A 183 932 3 D.STRIBUTIO

1 N/AVXfLABILITY OF REPORT

2b. DECLASSIFICATPON I DOWNG!R CHEDULE Unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER S. MONITORING ORGANIZATION REPORT NUMBER(S)

TR-8 7-8 59

-b. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZAIONr (if applicable)
Cornell University Office of Naval Research

6c. ADDRESS (City, State, ard ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Department of Computer Science 800 North Quincy Street
Upson Hall, Cornell University Arlington, VA 22217-5000
Itbaca, NY 14853

Ba. NAME OF FUNDINGISPONSORING |8b. OFICE SYMBOL 9, PROCUREMENT INSTPUMENT IDENTIFICATION NUM,'BER
ORGANIZATIONI (If applicable)

Office of Naval Research N00014-86-K-0092

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

800 North Quincy Street PROGRAM PROJECT TASK IWORK UNIT
Arlington, VA 22217-5000 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (include Security Classification)

Understanding Protocols for Byzantine Clock Sychronization

12. PERSONAL AUTHOR(S) Fred B. Schneider

13a. TYPE OF REPORT 113b. TIME COVERED 14. DATE OF REPORT (YearMonth, Da)~S AGE COUNT
interim I FROM T 87.8.24 T,36

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP fault-tolarance, distributed systems, c" ' synchronization

6.* ABSTRACT (Continue on reverse if necessary and identify by block number)
All published fault-tolerant clock synchronization protocols are shown to result from
refining a single paradigm. This allows the different clock synchronization protocols to be
compared and permits presentation of a single correctness analysis that holds for all. The
paradigm is based on a reliable time source that periodically causes events; detection of such
an event causes a processor to reset its clock. In a distributed system, the reliable time
source can be approximated by combining the values of processor clocks using a generaliza-
tion of a •"faultkolerant average' t, called a convergence function. The performance of a clock
synchronization protocol based on our paradigm can be quantified in terms of the two
parameters thatcharacterize the behavior of the convergence function used: accuracy and
precision.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 121. ABSTRACT SECURITY CLASSIFICATION•
WUNCLASSIFIED/UNLIMITED 3 SAME AS RPT. 0 OTIC USERS ib E E AOM

22. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL
Fred B. Schneider I (607) 255-9221 .

0D FORM 1473.84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

Understanding Protocols for
SAccesion For

Byzantine Clock Synchronization NTIS CRAWI

DrIC TAB 0
Urarinounced

Fred B. Schneider Justiticaticn

BY
Department of Computer Science Diktribution [

Comell University ---..-

!thaca, New York 14853 Ava~ti'itty Crudes

August 24, 1987 ist Avill and or

ABSTRACT

All published fault-tolerant clock synchronization protocols are shown to result from
refining a single paradigm. This allows the different clock synchronization protocols to be
compared and permits presentation of a single correctness analysis that holds for all. The
paradigm is based on a reElible time source that pediodically causes events; detection of such
an event causes a processor to reset its clock. In a distributed system, the reliable time
source can be approxiiiated by combining the values of processor clocks using a generaliza-
tion of a "fault-tolerant average", called a convergence function. The performance of a clock
synchronization protocol based on our paiadign, can be quantified in tenns of the two
parameters that characterize the behavior of the convergence function used: accuracy and
precision.

'Ms work is supported, in part, by NSP Grant DCR-8320274 and Office of Naval Research contract N00014-86-K-
0092.

1. Introduction

Certain applications require that synchronized clocks be ava;lable to processors in a distributed

system. For example, the accuracy of performance statistics computed in terms of elapsed time

between events at different sites depends on how closely the clocks at participating sites are syn-

chronized. Also, timeouts and other time-based synchronization schemes (such as the state-machine

approach [Lamport 84]) involve delays that are proportional to how closely clocks at participating

sites are synchronized. And, real-time process control systems require, that accurate timestamps be

assigned to sensor values so that these values can be correctly interpreted.

Other applications further require that clocks advance at approximately the same rate as real

time. To ensure that deadlines can be met in real-time process-conr.rol applications, tasks are usually

broken into small computations and scheduled based on the processor clock. If a clock synchroniza-

tion protocol suddenly sets that .-lock forward, thereby momentarily increasing its rate, the processor

might not be able to ha ,,Ile in a timely manner all the trasks that become due. Also, clocks are some-

times used to assign tiraestaraps to events so that it is possiblz; to infer potential causality between

events. For example, creation times of files ,re usuAlly taken to define the order in which tho!se files

were created. A clock synchronization protocol ',hat suddenly sets a clock back ccidd destroy the

consistency of time with respect to potential rausality.

Even if we could start all processor cloc;ks at the same time, they probably wvould not remain

synchronized for long. Crystal clocks found in today's processors run at rates that differ by as much

as 10-6 seconds per second from real time and thus can drift. apart by I second every 10 days; clocks I
based on power-line frequency can drift considerably more than this-when used as a time base, the

power grid in the Northeastern United States typically drifts 4 to 6 seconds from real time over the

course of an evening [Mills 851. Keeping clocks in a distributed system synchronized without

appealing to a single, centralized, time service requires that clock values be exchanged and clocks

periodically adjusted. If failures can result in faulty processors exhibiting arbitrary behavior, then the

protocol has the additionai burden of tolerating erroneous and inconsistent clock values.

This paper gives a single paradigm and correctness proof that can be used to understand all pub-

lished' fault-tolerant protocols for keeping clocks in a distributed system synchronized despite faulty

processors that can exhibit arbitrary behavior. The paradigm allows us to identify the different imple-

mentation choices made by each protocol in solving three subproblems it defines. This permits the

'E.g., [Babaoglu & Drurmmond 87], (Cristian et al. 86], [Halpern et al. 84], [Kopetz & Ochsenreiter 87], [Lamport &

Melliar-Smi:h 84], [Lampoat & Melliar-Smith 85], [Lundelius & Lynch 84], [Mahaney & Schneider 85], and [Srikanth &
Toueg 85].

-1-

various Byzantine clock synchronization protocols2 to be compared and the contributions of each to

be isolated. Previously, clock synchronization algorithms were viewed in terms of three distinct

classes: those based on convergence, those based on agreement, and those based on diffusion or

flooding of messages. Our proof is interesting because it necessarily generalizes all of the correctness
proofs that have appeated! for the individual clock synchronization algorithms. Also, it is the first

proof in which clocks am. treated as advancing at discrete times ("ticks"). Previous proofs modeled

clocks as monotonically increasing functions form real time to clock time.

The remainder of the paper is organized as follows. Our clock synchronization paradigm is

described in section 2. Techniques for reading clocks across a computer-communications network

are described in section 3. In section 4, we discuss properties of convergence functions, the central
component of *-'-,€ paradigm, and give some examples of convergence functions. Section 5 disc~usses
how agreement protozols can be used in implementing a convergence function. Conclusions and

related work appear in section 6. Appendix I analyzes the perfomiance of clock synchronization pro-

tocols derived from our paradigm and derives bounds for various parameters of such a protocol;

appendix 2 contains a glossary of the notation used in the paper.

2. A Paradigm for Clock Synchronization

The hardware clock at a correct processor p can be viewed as implementing a function c.. This

function maps a real time t to a clock time c,(.., is non-decreasing in its argument, and is character-

ized by positive constants gt, p, and r- Constant g. defines the range of initial values of the clock:

Hardware Initial Value: 0 < c (O) < j. (2.1)

Constants ic and p restrict the rate that clock time increases as a function of real time. Physical clocks

are counters that increase by 1 in response to periodically generated events called ticks. hi a physical

clock, the (real time) interval between ticks can vary and this can cause the clock value to advance at

a different rate than real time. For our purposes, it is more convenient to model a hardware clock as

having a fixed (real time) interval K between ticks, but advancing by a varying real number value v,

where (I-p)K<vv(1 +p)r, in response to each tick. That is, we require

cP(t + C)-P(t)
Hardware Rate: 0 < 1-p < <K l+p forO<t, (2.2)

where K is called the tick wi,4th and p the drift rate of the clock. Notice that (2.2) does not require the

value of c. to remain fixed between successive ticks although for most clocks this will be the ,ase;

2in the distributed computing literature, arbitrary behavior in -esponse to a failure is called Byzarnine behavior. Clock

synchronization protocols that can tolerate such failures are called Byzantine Ocr k synchronization protocols.

-2-

~~~~~~~~~~~~. .• . .... .. , - • ' . .. . .- - ----- • . • . •



Hardware Rate (2.2) merely ensuras that rate at which the clock advances is within p of the rate at

which real time passes.

We make no assumptions about the behavior of clocks at faulty processors--not even that they

can be modelod by functions. A clock at a faulty processor need not increase as real time passes and

might give inacurate or conflicting information when it is read.

A clock s mchronization protocol implements a virtual clock ýp at each processor p. A virtual

clock, like a ha i•ware clock, is a function that maps real time t to clock time ^ (t), is non-decreasing

in its argument, 'rod is characterized by positive constants A, P, and K such that for correct processors

p and q

Virtual Synchronization: I Cq(t).-^ (t) I 6 8 for 0!t, (2.3)

Virtual Rate: 0 < I- < 0 (:+5)-ap(t) P I+0 for05t. (2.4)

Scharacterizes how closely virtual clocks are synchronized with each other, I is the drift rate of vir-

tual clocks; and i specifies the (real-time) interval between virtual-'Jlock ticks.

If a reliable time source is available, then satisfying (2.3) and (2.4) is simple. The reliable time

source periodically distributes the correct time to all processors and, upon receipt of this correct time,

a processor adjusts its virtual clock accordingly. Provided the time is distibuted frequently enough,

processor clocks will not drift too far apart in the interval between adjustments, so (2.3) will be main-

tained. And, provided no processor has to adjust its clock by too much, the adjustment can be spread

over the interval that precedes the next resynchronization and (2.4) will be maintained. We have only

to implement the reliable time source.

The reliable time source serves two functions in the clock synchronization protocol just out-

lined. First, it periodically generates an event that when detected by a correct processor causes that

processor to resynchronize its clock. This can be formalized in terms of constants r,,j,, r,,,, and

as:

RTSI: A reliable time source generates a sequence of events at real times tkTs, tJs ... such

that

tkrS =u0 A (Vi: 0<i: -
and the real time tp at which a processorp detects the event produced at tRTS satisfies

t4-=o A (Vi: 1 i: o ,-ti -ts 5

-3-

-C Mr



(Choosing t6 n=t4--O models the fact that the protocol and clocks start at real time 0).

Second, in addition to causing events, the reliable time source facilitates clock synchronization

by providing a value to each correct processor.

RTS2: At t;, processor p obtains a value V, that can be used in adjusting ý, to be consistent

with (2.3) and (2.4).

There are two things to note about RTSI and RTS2. Firs-:, these properties do not imply that the

correct time is always available to processors-only that it is available periodically. Having a reli-

able time source from which the correct time is always available results in a different clock synchron-

ization paradigm than the one just described.3 Second, RTS2 does not stipulate that the same value be

odtained by every processor--only that the value provided can be used to achieve (2.3) and (2.4).

This permits values obtained by different processors to be compensated for known delays due to pro-

toco]• execution anO message delivery.

Although it is easy to satisfy RTSI and RTS2 using a single clock, the resulting time source is

only as fault tolerant as that clock is. A reliabl.- time source that does not depend on correct operation

of a single clock can be constructed by using approximately synchronized clocks in a distributed sys-

terrn. RTSI is achieved by using the individual piocesser clocks to signal the periodic resynchroniza-

tion events; RTS2 is achieved by having processors compute some type of fault-tolerant average of

the values of the clocks at processors in the system.

To describe the implementation of RTSI and RTS2 in a distributed system, it will be con-

venient to view resetting a virtual clock ', as starting another virtual clock that runs concurrently

with the old one. Thus, initially (i.e. at real time 0) p uses virtual clock • and p starts a new virtual

clock 4+1 at real time ti+r, when it detects the resynchronization event produced at time týS. Using

this convention, the value of •p(t) is characterized by

tPi:t <tP~ =* C^p(t)=C^P(t).

A virtual clock . is implemented at processor p using the hardware clock cq at processor p and

adding an adjustment value that is maintained by the clock synchronization protocol. Formally, this

is given by

*( ct) t) + FIX,(c,(t)) (2.5)

3While we have been Able to design clock synchronization prctocols based on this other paradigm, we have so far been

unable to develop a generic proof of correctness for than.

-4-



t4

where FIX,(T) is a function from clock time at processor p to a correction for hardware clock c,. 4

Thus, p reads • at real time t by reading c, and then adding the appropriate adjustment value based

on the current value of FIXp,.

So that a virtual clock does not violate Virtual Rate (2.4), the value of FIX, must change gradu-

ally as a function of time. Therefore, FIX,(T) spreads any change in its correction to cp over adjust-

ment Interval Al clock seconds, a parameter of the protocol. The following definition of FIX,(T)

achieves this. In it, adji-' is the adjustment to c. necessary to implement •- and adj4 is the adjust-

ment to implement ý, so adj4-adJ-1 is the additional amount that FIX, must add to cp over the Al

clock-second interval starting from t. in order to approach ':

FlXi(T) a adjp1 + (adj, - adj-l Xmin(T-c,(t,), Al))

At

The key to this definition is that O<min(T-c,(t.i), AI)<A/, so that the change from adjp-' to adj, is

gradually spread out over A/ clork seconds.

For FiXi, to work, At must be long enough to avoid violating the drift rate bounds for ýp in Vir-

tual Rate (2.4); however, it must not be too long or else Virtual Synchronization (2.3) could be

violated or the next superscripted clock might be started before the fud adjustment has been com-

pleted, leaving an even larger adjustment to be performed. The case where A/<5 is called instan-

taneous resynchronization; otherwise continuous resynchronization occurs. Appendix I characterizes

values for Al and other parmneters of our paradigm that ensure Virtual Synchronization (2.3) and Vir-

tual Rate (2.4) hold.

To implement RTS2, we use a function CF that essentially averages the values of the aproxi-

mately synchronized clocks at correct processors in the system. In a system of N processors, V',+t of

RTS2 is defined by5

+lCF(p, (t+) ... " '')

where CF 's called a convergence function because it brings clocks closer together. Given t.is

definition of 171,
o I = CF(p, i(tp1 ),.....i(:i')) -_c,4 1) (2.6)

is the amount that cQ,1') differs from ý)p•,p an&W we can now give the clock synchronization

41n this paper, clock times are denoted by upper-cue letteri; and real times by lower-cme lcters.

sEvaluatinI C~p( ý1 .(f N•', * seemingly requires that p be able to read at the same instant all the virtual

clocks maintained by other processour. Section 3 explains how to get around this problem.

"-5-

#I



pirotol for a pmcessm p in a distributed system consisting of N processors. It &ppears in Figure

2.1. Thre important fth about that protocol wre unspecified. They arm

0 the Implementation of "detect event generated at time :)A",

* how one processor reads the virtual clocks at other processors, and

* convergence function CF.

Different choices for these result in different clock synchronization protocols. In fact, the various

choices permit viewing in terms of our paradigm all the published clock synchronization protocols

that do not make use of an extcmai time source.

Much of this paper is, therefore, devoted to different implementation choices for the unspecified

aspects of Figure 2.1. The remainder of this section discusses different implementations of "d-tect

event generated at time tj4". Section 3 discusses methods ways that one processor can read the vir-

tual clocks at other pr'ocessors. And, sections 4 and 5 give properties and examples of convergence

functions.

i =1;

adj :=o; ad4:=o:
do forever

detect event generated at time tA;

t relm :=r now;
adj,,+l CF(p, (r,'),- .,i+',.

i := i+1

od

Figure 2.1. Clock synchronization protocol

ThWB and throughout. we use the notational device "t := real time now" as a way to talk about the value of a clock

during execution. Variable t is not actually implemented and is not directly accessible to the program, although c,t) is.

"-6-



Detecting Rusynchronlztlon Events

An obvious approach to implementing "detect event generated at time t•" uses the approxi-

mately synchronized virtual clocks. For some predefined value R, each processor p waits until ¢

maods W before starting 4÷. Either an interval timer or busy-waiting can be employed to implement
this waiting.

In this scheme, t6 is the earliest real time that some correct processor's virtual clock has value

IR. Since virtual clocks at correct processors can advance as quickly as I+A clock seconds per real
second, r MRI(l+A); and since they can advance as slowly as I-4 clock seconds per real second,

rmwRIR/(l-•). To compute P, note that at the time the fastest correct clock reads , due to (2,3) the

slowest correct clock must read at least iR-. Thus, this (slow) correct clock might take as long as

8/(1-A) real seconds until it reaches aR; so, I-88(o-4).
Another implementation of "detect event generated at time trA" is fbr each processor to broad-

cast a message when its virtual clock reaches some predefined value and to resynchronize when such
a message has been received from a correct processor. Here, 0 is bounded by the variance in the
(real-time) delay of performing the broadcst The details of this scheme, which is based on a simple
form of agreement, are given in section 5.

3. Reading Clocks from Afar

Processors have acce.s to clock time, not real time. This means that in order for a processor p

to obtain the arguments to CF needed to compute adj•+i (see (2.6)), p must obtain cp(t,+"), c^ (t•+,),

.... (t), which requires that it read N clocks simultaneously. This is impossible for two reasons.
First, without special hardware a processor can read only one clock at a time. Second, in a distributed
system, processors do not necessarily have access to each others' clocks.

One solution to both of these problemrs is for each processor locally to implement approxima-
tions of the virtual clocks at other processors. Processor p maintains a collection of tables 'r,[1 .. N]

that can be used to compute an approximation for ý'(t), and p approximates ý-(t) at real time t by

c,(t)+-z'q]. Thus, p can approximate c1 (t,+') .... ýN(t•+'), simply by reading cpQ;,'+) once and
using it and 'r, to compute the N values needed.

In one technique to construct z', fira;t described in [Lampon & Melliar-Smith 84], processor p

periodica2ly communicates with the other processors in the system. Suppose the minimum and max-
imum delays (according to the clock at any correct processor) incurred in sending a message from one
correct processor to another, receiving it, and processing it, are r.,, and F,,r . A processor p can

compute x,[q] by executing

-7-



Snd "i" clock time?" to
receve C from q timeout after 2rF,;
If timed-out tOn C :w-;
tfM..I real time now;

Processor q responds to a .l* clock time?" request fton p by sending back •9(t,), where tr*, is the

real time the reply is sent.

Dofline clock reoa& error X,'(q) to be the emot in p's approxlmation of i. Let A be the max-
imum clock reading error for any pair of correct processors. That Is,

(Vpq,L: I cq(t) - c,(O-€t[q] 1 :.9 (q) S A).

In order to bound A, first note that p's approximation of q's clock can drift away from q's clock by at

most A+p clock seconds per real second because the rate error of , is bounded by o^ and the rate

error of c, is bounded by p. Initially, q[q] is in error by at most r,., -r,,. since only ro, of the

message deWay incurred by q's response to p's time request is accounted for in the calculation of

tJq ]. Thus, at (rea) time t, .p(q) satisfies

4(q) s r.., - r., + ^p+AXt-1re4(q)) S A (3.1)

where Iread,(q) is the real time thatp last executed an assignment to 4[q] in the clock reading pro-

tocol above. Although X,4(q. is a fuction of t. an upper bound on t-lreadp(q) is usually known, and

therefore A can be treated as a constant.

Error Xp(q) can be kept small by recomputing '•[q] frequently, thereby keeping t-lreadp(q)

small. In practice, it suflces to obtain clock values from all processors just before computing adj+',

becauw this minimiz.s the clock reading error just before the clock values are actually needed. How-

ever, for reasonable intervals t-lread,(q), (A+pXt-lreadp(q))-4qr# - r,,iMI so minimizing the

uncertainty in the network delay is the key to reducing .,4(q). Uncertainty in network delay can be

reduced by installing the clock reading protocol in the lowest level of the operating system. This is

because a large part of the uncertainty in network delay can be attributed to uncertainty in program

execution time due to interrupts and other forms of multiprogramming. The time it takes a message

to traverse a wire connecting computers does not have a high variance. Even when messages are

muted through intermediate sites, delays due to queuing in sites doing relaying can be measured and

recorded in the message and therefore can be accounted for.

A variation on the clock reading scheme just given, used in the clock synchronization protoco ,.

of [Babaoglu & Drummond 87]. [Cristian et al. 86], [Halpem et al. 84], [Lundclius & Lynch 84], and

[Srikanth & Toueg 85], reduces the number of messages by half but can increase clock reading error.

.8I



Instead ofmrquestin the Miw, each processo q periodically broadcast its virtual Clock Value (includ-
ing superscript 1). Upon receipt of such a mensage, the receiverp updatesti4(qI as foMows.

rueulve C tom q
&, *.a rMal time now;
't[q I :MC- (Pow ,,

The reductionin number of messages sent using this scheme is due to lack of explicit request
menages-the passage of time, rad~er than an explicit request message, causes transmission of a
clock value. However, in a point-to-palmt network, clock reading errors can Increase when this
scheme is used. This increase is because a processor p does not necessauily know what communica-

tions line it should monitor for the next clock message it will receive. Polling communications
lines--even when done by procesaor microcode--increases r..., since It is possible for a message to
remain queued at the receiver for an entire polling cycle. Since polling does not increase r~,,, the
effect is to increase r. - rw... which, according to (3. 1), increases 4(q). Local area networks,
which usually have a single connection hetween the processor and network, do not have this problem.

4. Ccnvergence Functions

A converglence unction CF for use In a system of N processors is a function of N+l arguments
that satisfies certain properties. The first argument identifies the processor evaluating CF; each of the
following arguments x,,, lSq!N, is a value from processor q. The properties required of conver-
gence functions are given below. These properties are used in the proofs of Virtual Synchronization
(2.3) and Virtual Rate 92.4) given in Appendix 1. Thus, this abstract characterization of convergence
functions is what permits the single set of proofs of Appendlix 1 tc~ apply to a collection of clock syn-
chronization protocols.

The first property reqaired for a function CF to be a convergence function is th&. it be monoton-
ically non-decreasing in its last N arguments.

Monotonicity: If (Vi:I:S 1!iN: x,:5yj) then CF(p, x 1.....xM1) SCF(p. y 1.....,yN).

When CF is used for clock synchronization, arguments x I through )w ame time vailues, and this pro-
perty stites thnt the value of the Reliable Time Source does not decrease as time passes.

The next property asserts that the relative magnitudes of the virtual clock values--and not their
absolute values-matter when they are combined to produce the value provided to p for RTS2. Thus,
CF satisfies

Translation Invarlance: CF(,p~xl+v. ...,xjy+v) =CF(,p~x1,...,.xN)+v foO~v.

This property allows values of CF computed by different processors at dlifferent times to be

19,,



compared. If in the evaluation of CF by con processor, the values of arguments x 1 through XV are

shifted by the same amount (reflecting tde passage of time) hom the values used by the other, then

the neslt computed by the first will be shifted by that mount from the re"ut computed by the

Third, we require that die values of CF for two different proceasors p and q using similar values

for at least N-k corresponding arguments be closer than x. and x. were. This is the reason CF is

called a "eonvergence hanction". The utility of a conve e function in this regard is characterized

by a constant k called the JbAt-wkeraace degm and a hinction a called the preclslo. 7 Fault-

tolerance degre srecifle the number of am!ument values that can differ significantly in the evalua-

tion of CF by p and the evaluation of CF by q without greatly affecting the diff1ence in the results;

precision specifies how close together values obtained by these two evaluations must be. This is for-

malized by the

Predalon Enhanceimnt Property: I CF(p, z1,..., x) - CF(q,y,...,Y N) I S (, e) if

(a) at least N-k of the x.j's are within 8 of each other,

(b) the y 's correspondng to those N-k xi's are within 8 of each other, and

(c) foreach of the N-k argument pairs, Iy1-x! I e.

Conditions (a) and (b) define 8 to be the width of the interval spanned by values from correct proces-

sors; when using CF to implemert a reliable time source, this condition is satisfied if virtual clocks at

correct processors are synchronized to within 8 when read by p and q. Condition (c) stipulates that

coresponding (correct) aqpunents to CF are at most e apart; for a reliable time source, this condition

is satisfied if two values obtained by reading the same virtual clock v (real) seconds apart, for small

values of v, do not differ by more than v+e as a result of drift.

The. Precision Enhancement Property states that in order for CF to be a convergence function,

two evaluations must produce values that are close--at most x(8, e) apart--provided correct values

are within 8. even though the values used for k of the arguments (presumably, from faulty processors)

differ arbitrarily and each remaining pair of corresponding arguments differs by at most L. Provided

xR(, e) < 8, CF implements a time source that furnishes different processors with time values that are

7Our use of the cea. precision is based on its usual definition in connection with data mad rrmr analysis in the physical

sciences [Bevington 69]. [hme, "precision" is a measre of how exactly a result is dterminWd and. theefore. how rMpffu-
cible that result is. When used in this sone, precision anssr nothing about whether the result is close to the quamnity actual-
ly being mnsured--just that it is close to other reaults that mensme that quantity. The term "accuracy" is reserved for
charaerizing how close a result is to the mn value it measures.

410-



closer than the least synchronized virtual clocks at correct processors.

The final property of a convergen're function C' asserts that CF(p, x 1, .. ,xN) is not more than

a(8) away from arty correct argument, where any argument found within a 8 width interval contain-

ing N-ic or more arguments is considered correct.

Accuracy Preservation Property: Let XOK be a subset of xl, ... , xNq whose members are within

8ofN-k-lofXl,..,xN. Thben,

An obvious consequence of this definition is

a(8)~8.(4.1)

When CF is used as a rcliable time source and correct clocks are synchronized to within 8, W(8)

bounds the maximum amount by which virtual clock at a processor p must be adjusted. That is, for

all correct processors p:

(Vi: O < i: I adj,~'+-adjpI1:5a(8)). (4.2)

Function a is called the accuracy of CF. This (in the sense of [Bevington 691) is an apt name

for two reasons. First, a bounds the rate change made to a virtual clock ^, (through FIX,,), thereby

bounding the "accuracy" of the. rate of that virtual clock. Second, insofar as the clock at any correct

processor q approximates the real time and is therefore considered the true value of interest, at bounds

the difference between the value of a newly reset virtual clock and that true value.

Examples of functions that satisfy the three properties of convergence functions include:

Egocentric Average: CFEA(p, x1 .. xN) is the average of all arguments x I through xN that are

no more than 8 from xp.

Fast Convergence Algorithm: CFFCA (p, x, .. ,xN) is the average of all arguments x I through
XN that are within 8 of at least N-k other arguments.

ments x 1 through xN after the k highest and k lowest vallues have been discarded.

Fault-talerant Average: CFAg,(p, x1 ., xJV) is the average of arguments x I through XN after

the k highest and k lowest value-; have been discarded.

The fault-tolerance degree kc, precision n(8, e) when there are f faulty processors, precision when .f=k

as N goes to infinity, and accuracy a(8) for each of the above functions is given in Figure 4. 1. The

-11-



Name Fault-tolerance Precision x(8, e) Worst Precision Accuracy a(8)

degree k (f faults) (i.e. N-+ -o f=k)

N- 1  3_Z_+E 8+E 48
3 N 3

N-I 22 48
3 N 3 3

3 2

CFA N-1
3 N-2k

CFCCA N-i fi-4E 8 T4
3 N 3 3

CFBy, N-1 2A 2A 8

r. 1+P) r= (0 +4)
CFp SE 8  N-I r.+2(8-r.,)

CFI.w SE2s N-I rF, (I + A) r= (0 +P)
2 0 (1- -)

Figure 4.1. Properties of Convergence Functions

other Convergence Functions mentioned in the figure are discussed in section 5. CFE was first

presented and analyzed in [Lamport & Melliar-Smith 85] in connection with their interactive

$Assumes digital signotures.

-12-

A.R~flfl.*~ ~A ~MLAfl Aftfl A f I3.fl.ftUW1MJ mA n &Ai &AJ AA A, Lt'r n~lc, MA £, Ar n ~nA MAA n OP LXMLA ýArll ' ~ ~~~



convergence clock synchronization algorithm. CFFcA was proposed in [Mahaney & Schneider 85].

CFUmd and CFAv, are given in [Dolev et al. 83]; CFAV, is the basis for the clock synchronization pro-

tocol of (Lundelius & Lynch 84] and the (AM! S65C60) VLSI clock synchronization chip described

by [Kopetz & Ochsenreiter 87]. Characterizing convergence functions in terms of precision and

accuracy was first done by [Mahaney & Schneider 85]; most of the precision and accuracy functions

given in Figure 4.1 were first reported there.

5. Using Agreement for Convergence

An agreement protocol allows correct processors in a distributed system to agree on an action

or a set of values. This can help in two ways when impiementing a Reliable Time Source. First, use

of an agreement protocol to disseminate a signal that causes processors to resynchronize clocks can

be used to satisfy RTS1. Second, use of an agreement protocol to disseminate each processor's clock

can ensure that arguments in corresponding positions in evaluations of CF performed by different

processors are equal, thereby enhancing the precision of 7F and helping to satisfy RTS2.

Crusader's Agreement [Dolev 821 allows a 6:.ignated processor, called the transmitter, to

disseminate a value in such a way that:

CRUI: All correct processors that do not "know" that the transmitter is faulty agree on the

same value.

CRU2: If the transmitter is correct then all correct processors agree on its value.

Thus, Crusader's Agreement potentially partitions processors into three class-s: those that are faultq,

those that are conect and "know" that the transmitter is faulty, and those that are correct and have

agreed among themselves on a value from the ones sent by the transmitter.9 Crusader's Agreement is

simple and inexpensive to implement in a distributed system where fewer than 1/3 of the processors

are faulty and reliable communications is possible. 10

Byzantine Agreement [Lamport et al. 82] is stronger (but more expensive to achieve) than

Crusader's Agreement-all cor.ct processors agree on a value whether or not the transmitter is

faulty:

BYZ1: All correct processors agree on the same value.

9If the transmitter is correct men the set of correct processors that "kmow" that the transmitter is faulty will be empty.

10A commiudcations failure can always be viewed as a fuilure of tither the sending or receiving processor. Assuming

reliable message delivery here is merely an expository convenience.

-13-

JK* A Im " adl' i kw" u..RIOWMMWJ



4

BYZ2: If the transmitter is correct then all correct processors agree on its value.

The literature contains numerous protocols for establishing Byzantine Agreement. An early survey of

the area appears in [Fisher 83] and a tutorial in [Sclheider 85].

5.1. Agreement with Clocks

Protocols to implement Crusader's Agreement and Byzantine Agreement usually proceed as a

series of rounds. In the first round, the transmitter sends its value to every other processor. In subse-

quent rounds, each processor sends a copy of ev.ry value it has received to every other processor.
Eventually, each processor selects one from among the set of values it has received. The criteria for

selection doJpend on the protocol--use of median or mode is not unusual. Relaying messages through

different paths, although seemingly inefficient, is necessary because it prevents correct processors

from being confounded by inconsistent values sent along different routes hy faulty processors.

An agreement protocol intended for disseminating values must be modified for use in dissem-

inating clocks. This is because, while operations like making copies of values and sending such

copies through a network are simple, making copies of clocks and sending them through a network is

not. The key to avoiding this problem is to compute and send clock differences rather than the clocks

themselves [Lamport & Melliar-Smith 84].

To implement this scheme, c is encoded as a triple (proc, i, offset) that specifies c' has differ-

ence offset from , Thus, Z(t) can he approximated by a processor p as cp(t)+,i(proc]+offset.

This allows p to copy and send c" to another processor q by executing

send (proc, i, offset) to q.

Processor q receives this copy by executing

receive (proc', e, offset)

and thereafter approximates c, at time t by evaluating cq(t)+r*,[proc']+offset'.

When a clock is approximated in this manner, error is introduced by passing that clock from p

to q because c,(t)+c1[proc] is only an approximation for aroc(t). This means copies of E that

traverse different routes and are received by a single processor might not be identical, even though

they should be. Consequently, equality tests or selection of a clock based on the mode of a set of

clocks received cannot be used when clocks are passed around the system in this fashion.

Two schemes have been devised for modifying an agreement protocol to avoid these problems

with inequality of clock copies. The first is for the agreement protocol to be formulated in a way that

avoids using equality tests to select one from among the different (clock) copies received. Lamport

-14-

~!



and Melliar-Smith use this technique in their Byzantine Agreement protocols fo1 -clocks, which are

based on Byzantine Agreement protocols (Lamport et al. 82] that take the median of the set of values

received, and hence do not use equality of values. The second way to avoid the inequality of clock

copies problem is to consider a collection of clocks "equal" if all are within 2A of some clock value

in that collection. (Recall, A is the maximum clock reading error between ary pair of processes.)

Mahanev and Schneider use this approach to modify the Crusaders Agreement protocol of gIolev

82], which uses equality of values, to hand!', clocks [Mahaney & Schneider 851.

5.2. Obtaining Faster Convergence by Agreement

The Crusader's Convergence Algorithm CFCCA of [Mahaney & Schneider 85] is the result of

employing Crusader's Agreement to disseminate values before applying CFFcA.

Crusader's Convergence: CFCCA is:

(1) Each processor employs the Crusader's Agreement protocol to disseminate its clock.

(2) The value of CFCCA at processor p is the result of p applying CFFCA to the set of clocks

received.

CFccA has half the precision of CFFcA (i.e. convergence is twice as good) because due to CRUl of

Crusaders Agreement, it is not possible for correct processors p and q to use values for r,(t) that

differ by more than 2A unless one of p and q "knows" that r is faulty, in which case it can ignore a,(t)

completely. CFccA has the same accuracy and degree of fault tolerance as CFFcA. It is interesting to

note that when CFFcA is iterated twice-which requires the same two rounds of message exchange as

the Crusaders Agreement used in CFccA--the worst case precision is 48/9, clearly inferior to the 8/3

precision achieved when the two rounds of message exchange is used for a Crusader's Agreement.

Employing Crusader's Agreement before CFEA, CFMid and CFAVs also results in precision improve-

ments for those convergence functions.

When a Byzantine Agreement is used to disseminate clocks, all correct processors agree within

2A on an approximation for the clock at each processor, due to BYZI and the error bounds in approx-

imating clocks. Correct processors evaluating a convergence function will then differ by at most 2A

in values in corresponding argument positions. Define Sel, to be a function that returns its gIh largest

argument. If we employ a Byzantine Agreement protocol that can tolerate k failures to disseminate

arguments used in Setk+,, then we obtain a convergence function CFa, for clock synchronization:

Byzantine Convergence: CF8,, is:

(1) Each processor employs the Byzantine Agreement protocol to disseminate its clock.

-15-



(2) The ý'alue of CFB, at processor p is the result of p applying Selk+l to the set of clocks

received.

Provided there are k or fewer failures, Se4k+j at a correct processor p selects a clc:k that is guaranteed

to read within e=2A of the clock selected by every other. This means that the precision of CFBy, is

S( e)=2A-the precision for the convergence function is independent of 8! To bound the accu-

racy, note that because k <g <N-k, the gSh largest clock is either n correct clock or lies between

correct clocks. If correct clocks arm within 8, then the new clock is no more than 8 away from a

correct clock, so we conclude that the accuracy of the algorithm is oz,,(8)=8.

Clock synchronization algorithms based on Byzantine Agreement are described in [Lamport &

Melliar-Smith 84] and analyzed in [Lamport & Melliar-Smith 85].

5.3. Fireworks Agreement: An Optimization

When CF),, is used as a convergence function, only the largest k+l clocks are actually needed.

(Only the k+151 largest clock is retumed, but to decide which clock is the k+)J' largest. the k+l larg-

est clocks are needed.) Since performing a Byzantine Agreement can be costly-in both delay and

number of messages exchanged-avoiding Byzantine Agreements on the other clocks is desirable.

We, therefore, propose a somewhat weaker form of agreement to take the place of the Byzantine

Agreements used in connection with CFa,. This new form of agreement. which we call a Fireworks

Agreement, effectively allows correct processors to agree on the value of a single correct clock by

causing all to terminate the protocol at approximately the same (ical) time:

FW: All correct processors terminate with some a priori decided value v within P3 real

seconds of each other.

The name Fireworks Agreement is in analogy with a public fireworcs display, where participants

agree on when the display is over. In a fireworks display, P3 is non-zero if observers are different dis-

tances from the pyrotechnics; in a distributed system, 13 is related to message-delivery times.

In describing a protocol to implement Fireworks Agreement, we will assume that it is possible

for a correct processor to

Al: authenticate the sender of every message it receives and

A2: to determine whether a message it receives was modified by processors that relayed the

message.

These assumptions are satisfied if digital signatures are employed by the sender of a message or if

fewer than 1/3 of the processors are faulty and the simulated authentication technique of [Srikanth &

Toueg 84] is used to transmit messages. In either case (i) faulty processors are unable to masquerade

-16-



as correct processors and (ii) faulty processors are unable to modify and then retransmit mess.Ages

received from correct processors.

The following protocol implements a Fireworks Agreement for a message with value T. The

protocol is specified for a processor p and described as two rules, each of which might be imple-

mented as a separate process. The term "sufficient evidence" of rule (2) is defined below.

(1) When ý, (t)=T, processorp signs and broadcasts (T, p) to all processors (including itself).

(2) Upon receiving "sufficient evidence", p broadcasts that evidence to all processors and ter-

minates the protocol.

Two different schemes have been proposed for determining when there is "sufficient evidence" as

required in rule (2). Before turning to the details of these, we show that any scheme satisfying the

following properties leads to termination of the protocol by all correct processors within
S= r,,I/(1-0) real seconds:

Achievement of Sufficient Evidence: Some correct processor eventually determines that there

is "sufficient evidence".

Criterion for Sufficient Evidence: Evidence that is considered sufficient by a correct processor

p and rebroadcast is considered sufficient by any correct processor receiving that broadcast.

According to Achievement of Sufficient Evidence, eventually some correct processor will deter-

mine that there is "sufficient evidence". Suppose p is the first to terminate and does so at real time

:,. According to rude (2) above, it must have broadcast its "sufficient evidence" to all processors. In

the worst case, there are no other undelivered messages in the network when p makes that broadcast.

Thus, p's "sufficient evidence" can take as long as I,./(l-ý) real seconds to be received by another

correct processor q and therefore can be received as late as real time t•+T,,,/(1-1). According to

Criterion for Sufficient Evidence, q must also consider this "sufficient evidence", and, according to

rule (2), terminate the protocol. Thus, by tx+r,,/(1 -A) all correct processors have terminated the

Fireworks Agreement and we conclude I3=T,. /(l -0). I
Independent of the refinement of "sufficient evidence", Fireworks Agreement is used in con-

structing a convergerze function CFFw as follows. For the Pth Fireworks Agreement, we use

T=(i-1)R where (as in section 2)

R R

(4+p) (1-p)
And, for the value of CFpw(p ... ) associated with the Pth Fireworks Agreement we use:

-17-



FW(p, C^ I (tj)+V, ... p(t,)+v) m (i-I)R+r,.+v for0•v, (5.1)

Note that Monotonicity and Translation Invariance hold for CFpw by definition.

To bound precision xFw( 8 , e) of CFFW, substituting into the definition of precision, we get:

Fw(8, e) 2 ICFpw(p, ^ ,() .... ,cN(t)) - CFw(q, a (tq), ... ,ýN(ti)I. (5.2)

Without loss of generality, suppose ti <t , so that due to Monotonicity (5.2) simplifies to
:•(q •, .., -j) (5.3)

Using (5.1) with v=(ti -t•)(l+5) we get:

CFp,,p, , (:t,)+(4-t.;,)(l+A) ...,CN(tO,)+(t,-t4,)(l+p)) = (i-l)R+r,,,•+(t,-tr,)(l+A). (5.4)

Equation (5.4) is now simplified as follows. First, because j (i) ,,:( + due to Vir-

tual Rate (2.4), we conclude using Monotonicity thatCFFW,(p,• 1 (4) C^i) :5 •F~ c q
(t,).... •,(,,) <CF,(P, ^I (t;i)+(tqi-t;i)(l+A,). ..., ýN(rip)+(ti --tp)(1 +0))

Therefore, transitivity with (5.4) yields,

CFFW(P. C^(tqi), ... c^(t,'))S < (-l)R +r.,+(t•-di)( +0•).

By definition of [•, t-t,<. Making this substitudior. into the previous equation results in

CFFW(P, ̂ (,) q . ctq))S(-)+mf••ll

Substituting this into (5.3) gives a bound for xcw(8, e):

ip(8, e) > ((i-I)R+rx+(l+A)) - CFFw(q, c (t), .... cN(t)). (5.5)

By definition (5.1), CF-w(q,i(t), .... CN(tq)) w (i-I)R+r,,,. We use this to simplify (5.5)

further, obtaining

x~wC8, e) k ((i-l)R+r,,+f3l+A)) - ((i-I)R+F,,,•)

> l-(l+•).

Sufficient Evidence

One characterization of "sufficient evidence", which is the basis for the clock synchronization

protocol of [Halpern et al. 84], exploits the fact that the clock at a correct processor must be within

-18-



L

of the clock at any other correct processor.1

SEI: Receipt of a message m -(T, q) by p is considered sufficient evidence iff m is correctly
signed by s k 1 processors and received by p &t re&l time t,,, such that

T-s (8+r1,) s E1(tj,):s T+s (S+rin). (5.6)

To show that SEI satisfies the Criterion for Sufficient Evidence, suppose a Fireworks Agree-

ment terminates at p at time ^ Qt,.,) due to receipt of a message m. Thus, (5.6) holds. We must show

that (5.6) will hold whenever m is forwarded to another correct processor q. Thus, we must show that
T-(s+ I)(8+riu) ,.- Er(rc,2): < +(s+ I)(8+r..)

holds, where t,, is the time that q received the copy of m forwarded by p. Since p and q are both

correct, I $& Therefore, we can rewrite (5.6) in terms of40(t,,)
T-s (8+r,,.)-8 S 4(tm,) :5 T+s (8+r..)+8. (5.7)

Since at real time t,, p forwarded the evidence to q, by the definitions of rI. and r.. we have

•qt,,+r• qC,• -,<•(t,.)+r,.•. (5.8)

We can now substitute in (5.8) for ý,(t.,) using (5.7) and obtain

T-S (-r.-5r, < (t,•) S T+S (8+r,.)+8+r,.•

which, since the copy of m forwarded to q by p contains one more signature, imphes (5.6).

It only remains to show that SEI is eventually satisfied, hence Achievement of Sufficient Evi-

dence holds. The argument is simple. A correct processor executing rule (1) of the protocol will

receive a copy of the message it has broadcast. This copy w'', satisfy (5.6) because it will arrive

between r,, and r,,. clock seconds after it was sent.

Accuracy a (8) for SEI is illustrated as follows. Suppose

p is the correct processor with the fastest clock,

q is a faulty (even faster) processor such that 4,(t)4-,) 8-, and

r is the correct processor with the slowest clock and therefore EP(t)-,(t) -8.

Further, suppose q executes rule (1) at time ý-(tOw)=T and broadcasts a message m = (T, q). By

definition of p and q, 8p(t.,w)=T-8. The message will, therefore, be delivered to p by

"MTh protocol of (Crisnin et al. 961 also uses a variat of this form of "sufficient avidence". However, the test used
there is simpler than the one discussed here because their protocol tolerates only omission failures--not full Byzantine

failures.

-19-



T-8+r,,.. 9 •p(tm) S T-8+r, and p will find the message to be sufficient evidence, because it

satisfies (5.6). By definition of p and r, we have

r-8+rk-8 S Zr(t,) S T-8+r,-8.

Therefore, whei r receives the cop., of the message rebroadcast (according to rule (2)) by p, that time

c,(t,2) is given by
-<,(r,!) < T- 6+r.-6+r...

The message, therefore, satisfies (5.6) and is sufficient evidence for r to terminate. Moreover, since

T-8+Frw,-8+rw•,, S or,(r.2) and according to the protocol (i.e. (5.1)) r must set its clock ahead to

T+r.., rmight therefore have to set it ahead by as much as

(T+r'.) - (T-8+r'•.-8+r.

We conclude

ots•(8) - r,,,+2(8-F,•,).

Accuracy otwk) reveals a problem with SEI: A faulty processor (i.e. q) with a fast clock can

cause clocks at correct processors to reset so that they run faster than they should. (The consequences
of this ame quantified in the Appendix.) On the other hand, SEI has fault-tolerance degree N-I

because it was not necessary to stipulate an upper bound on the number of faulty processors.

A second characterization of "sufficient evidence", first used in the clock synchronization proto-

col of (Srikaith & Toueg 4 1ý 2 , is based on the fact that i' every processor broadcasts a message

when its clock reads T, then provi led Quere ire at most k faulty processors, the k+l' niessage

received must be from a corr-ct .ine &r must follow a message froma a correct one.

SE2: Receipt of c+ 1 messages originated by distinct processors is considered sufficient evi-

dence.

It is easy to see that SE2 satisfies our Criterion for Sutfficient Evidence--even after being forwarded

to another processor, the k+l rae-sages used for sufficient evidence at one procissor are still ori-

ginated by k+1 distinct processors, so tl-' -i,; be considered sufficieat evidence at another. Ensur-

ing Achievement of Suffi -ient Evidence, requires making an assumption about the number of faulty

processors. SE2 is guaraiteed to hold only if N52k+l because then there are fewer than k+I faulty

processors and at least k+l correct ones. Thus, fault-tolerance degree k=(N-I)12.

'1 A similar schene was later used in the protocrl of [Babaoglu & Drwumond 87],

-20-

i



S

The fact that when some processor receives sufficient evidence according to SE2 it must have
received a message from a correct processor means that the accuracy of SE2 is better than that of
SEI. A scenario that achieves worst-case accuracy with SE2 is given by the following. Suppose,

P IP2 ... p are correct prmessors with fast clocks,

Pk+! is a faulty processor with a fast clock, and

r is the correct processor with the slowest clock, so (Vi: I <i<k +l: P, ()-(t) = 8).

Further, suppose each processor p. ISi<sk+l broadcasts a message when ýp1(t$,:)=(i-l)R=T.

Thus, these messages are sent at time v(tr,)fT-8 and can be received by r as early as time

,p(t,€,)=T-8+rnFm. The set of k+l messages broadcast by P, through Pk+1 satisfy SE2, so r must
advance its clock by as much as

CFFW(r, N(4)) (..8k(4) -

(T+r.)- (T-8+r)

and we conclude

asE(8) = r +8-rm.

Clearly, accuracy with SE2 is superior to that achieved with SEI. This is not without cost, however.
SE2 requires that fewer than half the processors are faulty; SEI makes no assumptions labout the
number of faulty processors.

Clock synchronization algorithms based on Fireworks Agreement are interesting because a pro-
cessor cannot even evaluate CF without causing every other correct processor to resynchronize its
clock. Thus, the convergence function provides an implementation of both RTSI and RTS2; the con-
vergence functions discussed earlier provided an implementation of RTS2 only. On the other hand,
inherent in Fireworks Agreement is that processor clocks are read in the less accurate of the two ways
presented in section 3. Morervur, while it is possible to achieve precision of 2A using ani agreement
algorithm (i.e, CFj,), CFFw does not come close. The precision of CF'w depends on the maximum
message delivery delay, while precision of CF,,, is determined by the variance in message delivery

delay.

6. Discussion and Conclusions

We have discussed clock synchronization protocols that can be viewed as refinements of a sin-
gle paradigm. The paradigm is based on postulating a reliable time source that periodically issues
messages to cause processors to synchronize their clocks. Implementing the reliable time source
involves solving three subproblems. Different solutions to these subproblems yield different

-21-



0l

protocols.

The first subproblem defined by our paradigm is to generate events that cause all processors to

resynchronize. Any solution to this subproblem can be characterized in terms of three constants: rj,,,!

and r. bound the real-time interval that can elapse between when the first correct processor to

resynchronize for the &IA time does so aryl when the first correct processor to resynchronize for the

W+1a time does so. 0 bounds the real time that can elapse between when the first correct processor

resynchronizes for the iAh time and when the last correct processor resynchronizes for the iPh time.

The second subproblem defined by our paradigm is how a program being executed by one pro-

cessor can read the clocks on another. A solution to this subproblem is characterized in terms of A,

an upper bound on clock reading error.

The final subproblem defined by our paradigm is choice of a convergence function. Any func-

tion that satisfies the four properties given in §4-Monotonicity, Translation Invariance, Precision

Enhancement, and Accuracy Presrvation-will work. Such a function is characterized by its preci-

sion x, which bounds how closely it will bring values together, and its accuracy ', which bounds how

far its result will be from its argument.

If processor clocks run close together but far from real time, clocks implemented by an algo-

rithm based on our paradigm will remain synchronized with each other but will diverge from real

time. In order to construct a clock synchronization algorithm that keeps clocks close to real tim,., the

reliable time source must remain close to real time. Various international standards organizations

maintain highly accurate synchronized clocks. In the United States, WWV 60 KHz radio broadcasts

provide a time signal accurate to a few milliseconds, as does tie GEOS satellite. (WWV broadcasts

at 5, 10, and 15 MHz are accurate to only 100 milliseconds, due to uncertainty in propagation

delays.) Employing radio receivers to inject such correct real times into a distributed system is one

way to provide the needed source of time. Algorithms for clock synchronization when an external

source of time is available are described in [Marzullo & Owicki 83], [Marzullo 84], and [Lamport

851.
The fact that so many clock synchronization algorithms can be viewed in terms of a single para-

digm was a surprise. Previously, clock synchronization algorithms were viewed in terms of three

classes: those based on convergence, those based on agreement, and those in the style of [Halpem et

at. 84]. It was pleasing to discover that all the published algorithms can, in fact, be viewed in terms

of a single paradigm based on convergence functions. In addition, viewing algorithms as refinements

of a single paradigm allows their performance to be compared. Performance of a clock synchroniza-

tion algorithm based on convergence functions is characterized by it, c4 and the cost of computing the

underlying convergence function. Thus, by defining the notion of a convergence function and giving

-22-



a framework in which its puebomance can be quantified, we have made it possible to compare exist-
ing algoithms as wel as given insight into the construction of now algorithms.

-23-



Appendix 1: Proof of Clock Synchroniation

This section gives sufficient conditions to ensure that the clock synchronization protocol of Fig-

ure 2.1 satisfies correctness conditions Virtual Synchronization (2.3) and Virtual Rate (2.4). We

assume only the following about the solutions used for the thde subproblems left open in that proto-

col.

Event Generation. rj.a and rw. are the lower and upper bounds for the real-time interval that

can elapse between when the first correct processor to resynchronize for the iAh time does so and

when the first correct processor to es ynchronize for the i+1 time does so. P bounds the rual

time that can elapse between when the first and last correct processor resynchronizes for the i'k

time.

Clock Reading. A is an upper bound on the error associated with the value obtained when a

program executing on one processor reads the clock on another.

Convergence Function. CF has precision x, has accitracy c, and satisfies the Monotonicity,

Translation Invariance, Precision Enhancement, and Accuracy Preservation Properties of §4.

To simplify the exposition that follows, p, q, r, and x are assumed to range over correct proces-

sors only.

Synchronization of Virtual Clocks

To prove that Virtual Synchronization (2.3) is satisfied, we start by establishing that all correct

processors have started their ilk virtual clocks by the time the first correct processor starts its i+1"

virtual clock. This is necessary in order to be able to execute the assignmem to adj,÷1 in the proto-

col.

Lemma 1: Let '•r'=(min r: t+'1). If <ru then for any correct processorp, 4 .

Proof: Let t=(min r: t4). By the definition of r,,• in RTSI, r,.j Srti+,-4. Adding'to bothsides, rweSt -te. Adding t so by othi

sides, we get r.,..+4i "+'. The hypothesis that PSrj implies ts r
tivity ,+ Sr,.+ t'. Moreover, from the definition of 0 in RTSI, 4<4+[, so again by

transitivity tJ+Q~r. +t< . -

We now prove that virtual clocks that employ instantaneous resynchronization (i.e. Al s

satisfy Virtual Synchronization (2.3). Define

"F(t) a cp(t)+adji.

And, as before, let F,(t) be the value of p(t) where i satisfies rS:<t,+'. The proof ofVirtual

-24-



Synchronization (2.3) for p is in two step.;. The first step (Lemma 2) shows that when the last

con, -t processor to start its ih virtual clock does so, the ith virtual clocks at all correct processors

wiil be close together, the second step (Lemma 3) extends this, showing that this implies that correct

virtual clocks will remain close together.

Lemma 2: If (i) p3rj.
(ii) U:6S

(iii) x(8s+ 2 1P, 2(0(l+p)+A))<!8s

then(Vi: O<i: tx=max(rtiai)=ý i~q( 4 )_•p( 4 )I aBs).

Proof: By induction on i.

Base Case: (Vi: O<iSI: 4=max(t,4t) • Icq(tx)-p(4 )Il

O:5cP(O)<u due to Hardware Initial Value (2.1).

o<5FP(o):5- because adj° = 0 (see Figure 2.1).
O0:q(O)Su same argument for processor q.
O:Sp(t4)<u and O<F(Q,):Su since 1 O ( 1 ai!.so =t1=O=max(tP1,1q)=

I F,(t )-•(AI 5u substituting with previous line.

I'q (t,)-• (t4)I 15s due to hypothesis (ii).
(Vi•: o<i:<1: t,-max(tp,t') •,=ý )-•t)

!nduction Case. As an hIduction Hypothesis assume:

(VM: 0</5i. t=max(tt,tt)=* I )q()-Ep(tt) < (A1)

According to the protocol of Figure 2.1, the definiton of'j+•, and the fact that reading the clock

at another processor has an associated error, we have:

p (.p = CF(p, t + ... ,k(tQp')+X(N)) (A2)

qi(q)= CF (q,F'(t+1 )+%q(l), +1.4, 1 qT~i+)+Xq(N)) (M3)

The arguments to CF in both (A2) and (A3) are defined (and therefore can be computed) due to
Lemma I and hypothesis (i). Without loss of generality, assume t •ti+: . For correct proces-

sors p and q, we conclude
•-++1 1 -+1 i+1 I 1 i+1

C4 (tpi) :5 Eq (tq )+(t' -t )( l+p)

due to Hardware Rate (2.2). Using Monotonicity of CF, we substitute for qi+1, inhf

mula based on (A3) and obtain

-25-

L-- -- ------------



E + Sr CF(q,!: ..... + (t,,'-4'1 )(l+p).

Since, t; St+1 due to RTSI Qp2), (A4) can be simplified to

+1 CF(q,; z(ti+')+).q(l),.-Fk(41)+Xtq(N)) + 013(+p).

Transl ation Invariance ullows the 0(1+p) term to be moved inside CF, resulting in

'Eli +" I. op+)5 Fq, M

We can now use the Precision Enhancement Property for CF to show that

ti, 1max(e~~,444 , I e(+1)= iq+tx')--p+vv(+1)l 59s, as required to establish the Induction Case.
By assumption, 4"t. t' so it suffices to prove -I T 6  o sabi h
Induction Case. To do so, we first determine constants e and 8 for the Precision Enhancement

Property.

=i h 1lhi+ < fo

To characterize e, note that due to Hardware Rate (2.2) ad t e fact that tip f

each correct processor a,

j÷(.-P) < ( q, (ti+x1-P) +:5 t( 1 )-,"'i(ti+1 ):5 (t)+, 1-4 1)(l+p). 0(1+p).

Also, from the definition of A,

Therefore, the difference between the value in equation (MA) of the r'F argumeit to CF and in

equation (A2) for any correct processor a can be at most e=2(0(1 +p)+A).

To characterize 8 of the Picision Enhancement Property, note that by Induction

Hypothesis (Al) we have for correct processors a and b

t' l=max(t+',t') =ý IF+(t•+ )-F+b(t' +) ),s 5s (M)rdt stbihteInuto ae

Without loss of generality, assume rs determin Thus for the ai and b" arguments to CF in

(A2):

%+1)-'i'l (tii+

To char(ater-iz'- +P) (, n(ote)+(t 1h-a)(l-p)) due to Hardware Rate (2.2) since
t'< t'-+p by Lemma 1.

S F'(4)-F(t)+25p algebra and the definition of 3.

T 5 ds+2 pp due to (aM).

UsTng (A5) to characterize tp'(,) and (A2) to characterize o P i E er ty , not we getUsis (M1) to (hafractrrec (osr a) P)d)b

-26-



• x(8s+ 213p, 2((1 +p)+A)) by Precision Enhancement Property

< 8s by Hypothesis (iii).

This completes the Induction Case. 0

Lemma 3: If (i) I:S< rd.

(ii) U•Szs
(iii) x(Ss+20p, 2(0(l+p)+A)) < 5

(iv) 8s+ 2p(r..+1 3) 8

(v) ou(S+2p(rm.+13))+2pP: <6

then (Vt: 05t: I q(t)-•p(i) <6).

Proof: The conclusion of the lemma is equivalent to

(Vi: 0<i: (Vt: max(t•,t:)<t<minQt 1,+1 4 ): I•()-4(t)l<•)) A (A7)
(Vi: 0<i: (Vt: " in i+l q+ q+ ti+l <t+A-g)- <

4t+1 •5q+1 =,i(t)-FP(t)I

We first prove (A7). Due to hypothesis (i) - (iii) we can use Lemma 2 to conclude:

(Vi: 0<i: 6_ om i tq) -. I - 15Ss).

According to Hardware Rate (2.2), correct clocks drift apart no more than 2p clock seconds/real

second, and therefore

(Vi: O<i: (Vt: max(t',,t4)<t: IZq(t)-E4(t)1 •Ss+2p(t-max(tp,tq)))).

This implies

(Vi: 0<i: (Vt: max(t4,t, )<t min(t,+".tq+4): l '•(t)-F'(t)1 •Bs+2p(r,,.,a+13))). (A9)

because rdP,5,-m<min(t .+ ,r t)-max(tp,,4)<rr.+j due to RTS1 (§2). Using Hypothesis (iv),

(A9) can be simplified to

(Vi: 0<i: (Vt: maxQt, .4)•t •min ,ti+Q t ): I()

which implies (A7) as desired.

To prove (A8), without loss of generality we assume that tq <t•,+. Thus, (A8) is

equivalent to

(Vi: O<i: (Vt: min(t,+t. )•t<maxQ(,+,t4+'): I+t-/ )

-27-



and it suffices to prove that. To do this, we infer from (M9)

Therefore, we can take 8 in the definition of accuracy a to be.~&2(r,~P and using the

Accuracy Preservation Property obtain a bound for how T~ (rq 1 diffeirs from any argument to

CF used in calculating Fq+, (t4' ). Since Fpi(t4+1)) must have been such an argument:

(Vi: U ci: (Vt: t=mrIIItq41 4 ): I' 1 (t-(F q(s2~,,+3))

11is implies thuit

I ~(t-~() ~ z!5~ s+2p(r,,,m+p))+2p@ --rnih(t~,;1,rI~'q')))) (A2

due to Hardware. Rate (2.2). From the definition of in RTSl,
0•max(~,Pi1 ,4 1 -iQ'-4'~.s ation (A 12) implies

(Vi: 0 < : (Vt: minQti+ q &ttma q+l4)

Substituting for a(8S+2p(r,,,~+I))+2pP)) according to Hypothesis (v% v'ields

as was required (i.e. (A10)) in order to prove (AM).

The previous lemma established that virtual clocks using instantaneous resynchronization

satisfy Virtual Synchronization (2.3). We now prove that virtual clocks using continuous resynchron-
ization also satisfy Virtual Synchronization (2.3). Define ai to be the maximum number of real

seconds it takes for adjustment interval Al1to elapse at any correct processor. Thus, at =AJ1(1 -ý).

Further, define a fixed clock i' to be a function from real time to clock time saUsfying 13

F~l:(Vt:t'I+ai<t: jFi+1(t)....i +l(t)) and

Thus, outside of its adjustment interval, the value of ý' (t) is the same as +~1(t); and during its
adjustment interval, the value of F'+'(t) is guaranteed to lie between the value of F(t) and Fp''(t).

From FCl and FC2. we conclude that in order to provve for any given D

(Vt: 05t: Ipt)qt) L),we must establish

"~We use the notation xe [a. b I o denote min (a. b)Sx Smax (a. b).

-28-



(Vt: t+1<t<tp+2At^jg+'St<t~p+2 : I'•'(t)-•+l(t)IsD) and (A13)
(V~ t: ' StSr÷'~ +ai A fJl St• ~ ' ++ai: I F(t)-Fj(:) I ^D

"tp t: tp+ +aiAtq -~q p.

I Fp++ (t)p-ej(t) I1 D A (A14)

Since according to definition (2.5), a virtual clock •p satisfies the definition of a fixed clock, by

choosing 8 k ot(8+2p(ai)), the following theorem proves that Virtual Synchronization (2.3) holds tor

virtual clocks that use FIX to implement continuous resynchronization.

Theorem4: If (Vt: 05t: I~p(t-•'(t)I <8)

then (Vt: O5t Ip(z)-,q(t)l < ox(8+2p(ai))).

Proof: The result follows if we prove (A13) and (A14) for D=ot(8+2p(ai))). Using the

definition of FP, we rewrite the hyp.othesis of the theorem as:

(Vt: tS:54 <tp,+1 A t4,Sr <tj+ 'Fp' i (t)-FZ4(t) I 58.(A 15)

This implics (A13) if &5o(8+2p(ai)). To see that &5t(-8+2p(ai)), first note that 858+2p(ai)

since 0:p and Oai. The result then follows because 8S a(8) due to (4.1).

All that remains is to prove (A14). Due to Hardware Rate (2.2), F] and l' can drift apart

by at most 2p seconds per second. Therefore, we can extend the range of (A15) as follows:

(Vt,: t ,pt<t',÷1 +ai A ",:St<t.+•+ai: !i(t)-F3(t$Q1)S+2p(ai)). (A16)

By definition, t, <tpi+' <t•,•' +ai and t, <tJ+1 <tJ,1 +ai. So, from (A16) we conclude

(Vt: t+1: St <tpi+' +ai A tJ+1 S <<t*' +ai: I 'p(t)-Fj(t) I •+2p(ai)). (A17)

From property (4.1) of a, ý+2p(ai)SoC(8+2p(ai)), so

(Vt: tt,+'S:<t,+' +ai A t+'qSt<t<d+'+ai: IE(t)-Fj(t)l--.(o8+2p(ai))). (A18)

According to the Accuracy Preservation Property using 8=8+2p(ai) due to (A16), and

using the same argument as was used to change the range of (A15) to get (A17), we conclude:

(Vt: tpi+;,t<tr*l +ai A ̂t÷+St<tl+l +ai: I~l(,)-'4(t)I <a(8+2p(ai))) (A19)

(Vt: tr+'St <t,+' +ai A t++j t <1+' +ai: I p(t)-3 1+'(t)l Sc(8+2p(ai))) (A20)

We c(an now combine (A 18), (A 19), and (A20) obtaining (A 14) with oc(8+2p(ai)) D. This,

then, completes the proof. 0

-29-



Rates of Virtual Clocks

To prove that virtual clocks satisfy Virtual Rate (2.4), we first require the following technical

lemma.

Lemma S: If e>0 then (max xy,z: min((x+e)-y,z) - min(x-y,z)) < E.

Proof: First, suppose z~x-y. This implies that min(x-y,z)=z and that z<(x+E)-y. Conse-

quently, min((x+E)-y,z)=z. This means that when z<x-y,

min((x+e)-y,z) - min(x-y,z) = z-z = 0.

Next, suppose z >x-y. This implies that min(x-y,z)=x-y. Therefore,

min((x+e)-y,z)-min(x-y,z)
-min( (X+e)-y,: )-(x-y )

=min((x+e)-y-(x-y), z-(x-y))

=min(e,Z-x+y)

Since when v<e then max(0,v):e, the lemma follows. 0

We are now able to prove that virtual clocks have rates that satisfy Virtual Rate (2.4).

Theorem 6: If (i) 0<K5C

(iii) (l+p)[ 1+ :- 5 (1+0)

(iv)(1 -0:5 (1 -) -1

thenO < 1-p5 < (t+k)-•p(t) 1+0 forOSt.

Proof: Let i satisfy t,:t <rti,'. Consequently, •p(0-=(). Observe that t+k!<t,+1 because

otherwise we would have

t ,tti1<t+ i,

which would imply that p started C^, between two virtual clock ticks, contrary to the protocol of

§2.

-30-



We tre intereted in bounding

- c,~~)c~)Fxpcp(ft+F4(,( i))] - c()FXip(c,(t))]

First, we derive an upper bound for (A2 1). For a correct processorp, we have

from Hardware Rate (2.2). According to the definition of FIX,' (in §2), we have

FJ~~ct~i) Wadj-I+(a d4, - a djp-' Xmin(cpQ+i)-cp~tp), Al))

FIX~~c~~t) - dj,-'+(adj, - adjp-I )min(cp(t)-cp(t,) , Al))
At

Therefore,

FlX,'(cp(t44))-Fl4((c,(t))=

(adj, ,-adjp1 )(min(cp(t+i)-c,(tp), Al) - min(cp(t)-cp(tpi), Al)) (A23)

Al

Letting

=+ pti

X = W

y = O)
z =AN

due to Hypothesis (i) and the fact that hardware clo,.cs are non-decreasing, we have e~tO. Thus,

we can apply Lemma 5 to infer from (A2 3):

(adj, -adj' 1 )(e)
FlXpi(cp(t~i))-Fl4p((c,(t)) :5 Al

-31-



(adJ, -adj j' X(l+p)kc) (A24)

Al

Substituting into (A21), using (A22) for c,(t4+)-cq(t) and (A24) for

UP•(¢P(t+i))-'F1Xi(¢P(t)) we get

According to (4.2),

-a(g)f I•adj-ad.i-' I :(g8) (A25)

since Hypothesis (ii) stipulates that virtual clocks are synchronized to within 8. Therefore,

Thus, using Hypothesis (iii) and transitivity, we get

< (l+6)

as des; -d.

Next, we derive a lower bound for (A2 1). According to Hardware Rate (2.2), we conclude
_-q)• <cp(t+i)-CP(t). A6

Uvi- he same argument as above with -a(8) as the lower bound for the value of adjp -adj,'-
(due to (A25)), we get

1I-., <z8 ________

CFD -CQ
ICI

Thus, using Hypothesis (iv) we get

as desired. 0

-32-



Appendix 2: Glonary of Notation

The section in which each term is defined appears in parenthesis at the end of the entry for that term.

ai Maximum number of real seconds in adjustment interval over which resynchronization is
spread (Appendix 1).

Al Number of clock seconds in adjustment interval over which resynchronization is spread
(§2).

ad4l, p(t) - cp(t)+adj, except during the adjustment interval (§2).

CP Hardware clock at processorp (§2).

cp Virtual clock at procesorp (§2).

i Ph virtual clock at processorp (§2).

ep Virtual clock at processorp using instantaneous resynchronization (Appendix 1).

Pe Fixed clock at processorp (Appendix 1).

FIXp, Correction factor to spread adjp,-' -adj over Al and transform c. into cP (§2).

r,, Minimum real time between successive events produced by the reliable time source (§2).

r.. Maximum real time between successive events produced by the reliable time source (§2).

R Resynchronization interval in clock seconds (§2).

S Real time p starts c (§2).

4t.s Real time the reliable time source generates the iPh event (§2).

Vp, Value provided by reliable time source to p for starting c^ (§2).

ax(8) Accuracy of convergence function CFx (§4).

Maximum real time delay between generation of an event by the reliable time source and
detection of that even by a correct processor (§2).

r,,,• Maximum delay according to the clock at any correct processor to send a message from one
processor to another (§3).

r,,, Minimum delay according to the clock at any correct processor to send a message from one
processor to another (§3).

-33-



& Difference between any two correct virtual clocks (§2).
8s Bound--at the instant both have been started-on the difference between any two identi-

cally superscripted correct virtual clocks that use instantaneous resynchronization (§7).

K: Real time tick width for c. (§2).

K Real time width of a tick by CE (§2).

X.•(q) Bound on error in p's approximation of Zi (§3).

A Maximum clock reading error for any pai4 of processors (§3).

A Upper bound on c,(O) (§2).

iXx(& E) Precision of convergence function CFx (§4).

p Upper bound on cq drift rate (§2).

P Upper bound on ýp drift rate (§2).

?;[q] Approximation of 4(t i)-c,() (§3).

Acknowledgments
Discussions with Ozalp Babwglu, Steve Mahaney, Leslie Lamport, and Sam Toueg have been helpful. In addition, I

am grateful to Jacob Aizikowitz, Ozalp Babhoglu. David Griesm Keith Marzullo Mike Merritt, and Rick Schlichting for use-
ful comments on an earlier versions of this paper. The notions of accuracy and procision were developed jointly with Steve
Mahaney under a consulting agreement with AT&T Bell Laboratories.

References
[Babaoglu & Drumnond 87] Babaoglu. 0. and R. Drummond. (Almost) no cost clock synchronization. Proc. Seventeert h

Intenational Symposium on Faaf-toerant Compating, Pittsburgh, Penn., July 1987, IEEE Computer Society

42-47.

(Bevington 691 Bevington, Pilip R. Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill Book
Company. New York. 1969, p. 3.

-34,



[Crlatim al. 86] Cristian, F., H. Aghili, and R. Strong. Clock synchronization in the presence of omission and perfor.

mum fuaits, and processr joins, Prc. Sixtunh IntWrional SYNWim on Fauat-tolerut Computing,

Vienma, Austria. July 1986, IEEE ComPlar Society, 218-223.

(Dolev 82] Dolel, D. The Byzantine Generals strike agan. Journal qfAlithm 3 (1982), 14.30.

[Dolev et al. 83] Dolev, D., N.A. Lynch. S.S. Pinter, E.W. Stark, and W.E, Weihl. Reaching approximate agreement in the

presence of faults. Proc. Third Symposiao on, Reliabili in Distributed Sofware nd Dat.aMe Systems, Oct.

1983, IEEE Compute Society, 145-154.

[Fisher 83] Fischer, M. The consensus problem in ueiliable distributed systems (a brief survey). Proc. IAternational

Ceference on Foundatiom of Comprutation Theory, Borgholm, Sweden, August 1983.

[Halpen at at. 84] Halpern, L., B. Simons, R. Strong, and D. Dolev. Fault-tolerant clock synchronization. Proc. of the
Third ACM SIGACT-SIGOPS Sympo6sia on Principles of Disribated Computing, Vancouver, Canada, August

1984, 89-102,

[Kopetz & Ochsenreiter 87] Kopett. H. and W. Ochmmriter. Clock synchromization in distributed real time systems.
IEEE Transactions on Computers C-36, 8 (August 1987), 933-940.

[Lamport 84] Lamnpoit, L Using time instead of timeout for fault-tolerance in distributed systers. ACM TOPLAS 6, 2

(April 1984), 254-280.

[Lam uort 85] Lamport, L Notes on a time service. Preliminary Report, DECSRC, Palo Alto. CA. Nov. 1985.

[Lamport & Melliar-Smith 84] Lamport. L and P.M. Mellier-Smith. Byzantine clock synchronization. Proc. of the Third

ACM SIGACT.SIGOPS Symposiu.m on Principles of Distributed Compuaing, Vancouver, Canada, August 1984,

68-74.

[Lamport & Melliar-Smitla 851 Larnpor L and P.M. Melliar-Smith. Synchronizing clocks in the presence of faults. J.

ACM32, 1 (Jan. 1985),:52-78.

[Lamport et al. 82] Lamport, L., It. Shostak, and M. Pease. The byzantine generals problem. ACM TOPLAS 4, 3 (July

1982), 382-401.

[Lundelius & Lynch 841 Lundelius, J. and N. Lynch. A new fault-tolerant algorithm for clock synchronization. Proc. of

the Third ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, Vancouver, Canada,

August 1984, 75-88.

[Mahaney & Schneider 85] Mahlney, S.R. and F.B. Schneider. Inexact agreement: Accuracy, precision, and graceful
degradation. Proc. of he Fourth ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,

Minaki, Ontario, Canada. August 1985, 237-249.

[Mmzullo & Owicki 83] Marzullok. K. and S.S. Owicki. Maintaining the time in a distributed system. Proc. of the Second

ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, Montreal, Quebec. Canada.

August 1983, 295-305.

(Marzullo 84] Marzullo, K. Maintaining the time in a distributed system. An example of a loosely-coupled distributed ser-
vice. Ph.D. Thesis, Delpatment of Electrical Engineering, Stanford University.

[Mills 85] Mills, D.L Experiments in network clock synchronization. ARPANet RFC957, Sept 1985.

[Schneider 851 Schneider, F.B. Paradigms for distributed programs. In Distributed Systems. Methods and Tools for

Specification, M. Paul and H.J. Siegert, eds. Lecture Notes in Computer Science, Vol. 190, Springer-Verlag,

Berlin, 1985, 432-443.

[Srikanth & Toueg 84] Srikanth, T.K. and S. Toueg. Simulating authenticated broadcasts to derive simple fault-toler-.it
algorithms. Technical Report TR 84-623, Department of Computer Science, Cornell University, Ithaca, New

York, July 1984.

[Srikanth & Toueg 85] Srikanth, TK. and S. Toueg. Optimal clock synchronization. Proc. of the Fourth ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Compting, Minaki, Ontario, Canada. August 1985, 71-86.

-35-


